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Abstract:  

                   In this paper, we will define the logarithm form of a neutrosophic real number. We have 

proven some properties and theories, including the division of neutrosophic real numbers. In addition, 

we have given the exponential form of a neutrosophic real numbers. 
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1. Introduction 

                    The American scientist and philosopher F.Smarandache came to place the neutrosophic 

logic, and this logic is as a generalization of the fuzzy logic, conceived by Lotfi A. Zadeh and Dieter 

Klaua in 1965. Neutrosophic sets have been introduced to the literature by Smarandache to handle 

incomplete, indeterminate, and inconsistent information.In neutrosophic sets, indeterminacy is 

quantified explicitly through a new parameter I. Truth-membership (T), indeterminacy membership 

(I), and falsity-membership (F) are three independent parameters that are used to define 

a neutrosophic number. Smarandache proposed the neutrosophic Logic to represent a mathematical 

model of uncertainty, vagueness, ambiguity, imprecision, undefined, unknown, incompleteness, 

inconsistency, redundancy, contradiction, where the concept of neutrosophy is a new branch of 

philosophy introduced by Smarandache found root index n ≥ 2 of a neutrosophic real and complex 

number.  

      Studying the concept of the Neutrosophic probability, the Neutrosophic statistics , and 

professor Smarandache entered the concept of preliminary calculus of the differential and integral 

calculus, where he introduced for the first time the notions of neutrosophic mereo-limit, mereo-

continuity, mereoderivative, and mereo-integral . Madeleine Al- Taha presented results on single 

valued neutrosophic (weak) polygroups . Edalatpanah proposed a new direct algorithm to solve the 

neutrosophic linear programming where the variables and right hand side represented triangular 
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neutrosophic numbers . Chakraborty used pentagonal neutrosophic number in networking problem, and 

Shortest Path Problem.Professor F.Smarandache presented the definition of the standard form of 

neutrosophic real number and conditions for the division of two neutrosophic real number to existand 

also he defined the standard form of neutrosophic complex number.This paper aims to study and define 

the exponential form of a neutrosophic real number by defining logarithm form of a neutrosophic real 

number, division of the neutrosophic real number, and properties of neutrosophic real numbers. 

 

2. Preliminaries 

Definition 2.1 [6] 

A neutrosophic number has the standard form: a + b   

               where a, b are real coefficients and  = indeterminacy , such 0.   = 0 

n  =   for all positive integer n. 

            If the coefficients a and b are real, and then a + b   is called neutrosophic real number. 

     For example: 2 + 7   

Definition 2.2 

            Real numbers can be defined as the union of both rational and irrational numbers. They can be 

both positive (or) negative and are denoted by the symbol “R”. All the natural numbers, decimals and 

fractions come under the real numbers. 

     For example: 27, 22/7, 0.22. 

Definition 2.3  

R is a neutrosophic Real number, 

                The general form:   R = a + b  + c/ d + e  / f 

Where a,b,c,d,e and f are real coefficients, whenever d 0 and f 0, and     is indeterminacy  

Definition 2.4 

           Suppose R= a + b  + c/d + e/f    is neutrosophic Real numbers , then absolute value of a 

neutrosophic Real number is    

            R  =   (a + b  ) 2 + (c/d + e  /f) 2  

3. Properties of Neutrosophic Real numbers 

           The following are the four main properties of neutrosophic real numbers, 

                           Commutative property 

                           Associative property 

                           Distributive property  

                           Identity property 
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Consider a + b  , c + d  , e + f   are three neutrosophic real number. Then the above         properties can 

be described using a + b  , c + d  , e + f   as shown below 

Commutative property 

       If a + b   and c + d   are the number, then the general form will be 

                 (a + b  ) + (c + d  ) = (c + d  ) + (a + b  )   for addition and          

                 (a + b  ) . (c + d  )  = (c + d  ). (a + b  )   for multiplication. 

          Addition: (a + b  ) + (c + d  ) = (c + d  ) + (a + b  )   

                     For example: (2+ 7  ) + (6 + 9  ) = (6 + 9  ) + (2 + 7  )  

         Multiplication: (a + b  )   (c + d  ) = (c + d  )   (a + b  )      

                     For example: (2+ 7  )   (6 + 9  ) = (6 + 9  )   (2 + 7  )  

Associative property 

          If a + b   , c + d  and e + f   are the number,  

                   Then the general form will be 

                       a + b   + ((c + d  ) + (e + f  )) = ((a + b  ) + (c + d  )) + e + f   for addition 

                     a + b   . ((c + d  ). (e + f  )) = ((a + b  ). (c + d  )) . e + f   for multiplication 

              Addition:  a + b   + ((c + d  ) + (e + f  )) = ((a + b  ) + (c + d  )) + e + f   

                        An example of additive associative property is  

                             2+ 7   + ((6 + 9  ) + (3 + 8  )) = ((2+ 7  ) + ((6 + 9  )) + 3 + 8             

               Multiplication:   a + b   . ((c + d  ). (e + f  )) = ((a + b  ). (c + d  )) . e + f              

                         An example of additive associative property is  

                             2+ 7     ((6 + 9  )   (3 + 8  )) = ((2+ 7  )   ((6 + 9  ))   3 + 8   

 Distributive property 

               For three numbers a + b   , c + d  and e + f  are neutrosophic real in nature, the distribution 

property is represented as,     

                                    a + b   . ((c + d  ) + (e + f  )) = (a + b  ) (c + d  ) + (a + b  ) (e + f  ) 

 ((a + b  ) + (c + d  )) e + f   = (a + b  ) (e + f  ) + (c + d  ) (e + f  ) 

      Example of distributive property is  

                     2+ 7  ((6 + 9  ) + (3 + 8  )) = (2+ 7  )   (6 + 9  ) + (2 + 7  )  (3 + 8  ) 

 Identity property 

            There are additive and multiplicative identities     

                       For addition: (a + b  ) + 0 = a + b       (0 is the additive identity) 

                         For multiplication: (a + b  )   1 = 1   (a + b  ) = (a + b  ) 

                                    (1 is the multiplication identity) 
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Theorem 3.1 [1] 

             For any neutrosophic real numbers a + b   and c + d  , we have 

                       (a + b  , 0) + (c + d  , 0) = ((a + b  ) + (c + d  ), 0), 

                       (a + b  , 0)  (c + d  , 0) = ((a + b  ) (c + d  ), 0) 

 Proof:        

           Let a + b   and c + d   be neutrosophic real numbers. 

            Using Distributive property, we get 

                      (a + b  , 0) + (c + d  , 0) = ((a + b  ) + (c + d  ), 0) 

                      (a + b  , 0)  (c + d  , 0) = ((a + b  ) (c + d  ), 0) 

                               This completes the proof. 

4: Exponential forms of the neutrosophic real number: [1] 

              Suppose xe in a power series around the origin and obtain some properties of xe  

Define E (a + b  ) = 


0n

 (a + b  ) n  /  n!  and show that E(a + b  ) = )( bae for all  a + b    

 

 

 

Theorem 4.1: 

E (a + b  ) satisfies the following properties 

i. E (a + b  ) is differentiable for all a + b    and E  (a + b  ) = E (a + b  ) , 

           (a + b  )  

ii. E (a + b  + c +d  ) = E (a + b  ) E(c +d  ) , (a + b  )  

iii. E (a + b  )   as a + b    and E (a + b  ) 0  as a + b    

iv. (a + b  )
n

 E (-(a + b  )) 0  as a + b    for n   

 Proof:  

i. We first observe that the radius of convergence of this power series is infinity , 

                   Hence E (a + b  ) is differentiable for all a + b    and  

     E  (a + b  )  = 1

1

)( 





n

n

ban  / n! 

                        = 


0n

 (a + b  )
n

 / n! 

                   Hence    E  (a + b  )     = E (a + b  )  

       4 
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ii. E (a + b  ) E (c + d  ) = 


0n

  (a + b  )
n

 / n!  





0m

 (c + d  ) m  /   m!   

                         =  


0n

   


n

k 0

 (a + b  ) k (c + d  ) kn  /   k! (n -k)! 

                       “


0n

   


n

k 0

a k b kn    = 


0n

(a n b n )” 

                     =  


0n

 1/ n! 


n

k 0









k

n
 (a + b  )

k
(c + d  ) kn  

 

               E (a + b  ) E (c + d  ) = E (a + b  +c + d  ) 

  

 

iii. E (a + b  ) >1+ a + b   

 

                             E (a + b  )   as a + b   and if a + b    

                                 Then a + b   = - (c + d  ), where c+ d     and 

    E (a + b  ) = 1/  E(c + d  ) 0  as a + b  .   

                 Hence E (a + b  )   as a + b    and E (a + b  ) 0  as a + b    

iv. Power series representation 

                 

                               E (a + b  ) > (a + b  ) 1n  / (n+1)!  for a + b  >0 and  

                              Hence (a + b  ) n  E (-(a + b  )) = (a + b  )
n

1/  E(a + b  ) 

                                                                                < (n + 1)! / a + b   

                                

                      This shows that  

                                      (a + b  )
n

 E (-(a + b  )) 0  as a + b     

                                       When n>0 ,     On the other hand if n < 0,  

                      Then both (a + b  )
n

and  E (-(a + b  ))  tend to 0 as  (a + b  )                                                                                                                                                     

                      Hence (a + b  )
n

 E (-(a + b  )) 0  as a + b    for n   

Theorem 4.2: 

        If f: E   ,  is neutrosophic measurable and f  )(EL .then )(  baf < a.e on E                 
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 Proof:       

             Let F = {a + b E  /   )(  baf = }   

              Then F is neutrosophic measurable and  

                      If m (F) >0, 

                          Then )()(  badmbaf
E

  
F

badmbaf )()(  

                                                                        > n.m(F) for all n=1,2,….. 

                   This shows that  

                                    )()(  badmbaf
E

 =  , a contradiction. 

                                     Hence m (F) =0 (or) that )(  baf < a.e on E.  

5. Logarithm forms of the neutrosophic real number [1]: 

The power series for )( bae  for a + b  .we develop the same for log (1 +(a + b ))  for 

1 ba  

Theorem 5.1: 

               log (1 + (a + b) =
     

...........
!3!2!1

32








 bababa

  1 ba  

    Proof: 

The geometric series 


0n

(-1) n (a + b
n)  whose radius of convergence is 1 , with partial sum  

S n (a + b )  = 1 – ( -( a + b
n))  / 1 + ( a + b )  converging to S(a + b )  = 1 / 1 + ( a +b )  

   

             we now choose r such that 0< r <1 and restrict  a + b   to  ba r   

             if S n (a + b )   S(a + b )  uniformly for  ba r  as n   

 “ 
b

a

fd  = 


1n

 df

b

a

n  “ 

                      we get log ( 1 + ( a + b ))   = 




ba

tdt
0

1/  

                                                                  =   
 



ba

n0 0

 (- 1) n t n  

                                                                  = 


0n

(- 1) n (a + b
1)  n
 / n+1 

       6 
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                                                                  = 
     

...........
!3!2!1

32








 bababa

  

   

                             Valid for  ba r <1   .    So,  ba <1. 

Conclusion:  

                    In this paper, we defined the logarithm and the exponential form of a 

neutrosophic real numbers with suitable appropriate proof, and many properties were presented to 

encapsulated the abstraction of this paper. 
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